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ABSTRACT 

The flow in a two-dimensional curved channel driven by an azimuthal 
pressure gradient can become linearly unstable due to axisymmetric perturba- 

tions and/or nonaxisymmetric perturbations depending on the curvature of the 
channel and the Reynolds number. For a particular small value of curvature, 

the critical Reynolds number for both these perturbations becomes identical. 

In the neighborhood of this curvature value and critical Reynolds number, non- 
linear interactions occur between these perturbations. The Stuart-Watson 
approach is used to derive two coupled Landau equations for the amplitudes of 

these perturbations. The stability of the various possible states of these 
perturbations is shown through bifurcation diagrams. Emphasis is given to 

those cases which have relevance to external flows. 
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1. INTRODUCTION 

In plane channel flow, instability arises due to the amplification of 

Tollmien-Schlichting (TS) waves. As these waves grow, they modify the mean 

flow, produce higher harmonics, interact with other waves, and probably pro- 

duce turbulence. The initial stage of development of these waves from the 

linear region to the weakly nonlinear domain was analyzed by Stuart (1958) who 

derived the Landau equation for the temporal development of the TS wave. The 

presence of the cubic nonlinearity in this equation modifies the otherwise 

exponential variation inherent in a linear theory. This theory was able to 

explain the existence of an equilibrium finite amplitude perturbation in cer- 

tain regions near the neutral curve. 

Taylor (1923) was the first t o  consider the instabilities that arise due 

to the curvature of streamlines. He investigated the flow between two concen- 

tric cylinders due to the rotation of the inner cylinder with the outer cylin- 

der stationary. He found that the flow becomes unstable when the parameter 

Re(d/R1)'I2 (now referred to as the Taylor number) exceeds a value of about 

41. Here R1 is the radius of the inner cylinder, d (<<R1) is the gap width 

of the cylinders, and Re is the Reynolds number based on the speed of the 

inner cylinder and d. The instability that appears as the speed of the inner 

cylinder exceeds the critical value is in the form of toroidal vortices. 

These vortices are modelled theoretically by an axisymmetric perturbation and 

they are stationary when they first appear. 

Dean (1928) also investigated the instability in a curved channel due to 

the curved streamlines (see Figure 1). The flow in his experiment was gener- 

ated by an azimuthal pressure gradient. The channel is formed by portions of 

two concentric cylinders having channel width d << R1. Basing the Reynolds 
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number, Re, on the mean speed of the unperturbed flow, Dean (1928) and 

Walowit, Tsao, and DiPrima (1964) found that instability arises when 

Re(d/R,)’’2 exceeds a value of about 36. Here, too, as in Taylor’s experi- 

ment only axisymmetric disturbances were considered. 

In a detailed analysis of the linear stability of curved channel flow, 

Gibson and Cook (1974) argued that in a curved channel of very small curvature 

non-axisymmetric disturbances can play a significant role in destabilizing the 

mean flow. Such perturbations are analogous to TS waves in a plane channel. 

Their linear stability analysis shows that f o r  channels with very small 

curvature, the critical Reynolds number for the TS waves is almost independent 

of rl , (n = R1/R2, R = radius of outer wall), and it approximates very 

closely the corresponding value for a plane channel. The critical Reynolds 
2 

number for the axisymmetric instability (Gortler vortices), on the other hand, 

is quite sensitive to rl for n close to 1 (Figure 2). For a particular 

value of rl = nC, the critical Reynolds numbers for these instabilities are 

identical. For a slightly wider channel, the critical Reynolds number for the 

Gortler instability is lower than the almost constant critical Reynolds number 

for the TS perturbation. For a narrower channel, the critical Reynolds number 

for the Girtler instability is higher. It is, therefore, reasonable to expect 

both perturbations could exist simultaneously and thereby that near 

interact with each other. 

.. 

OC 

The purpose of this paper is to analyze the weakly nonlinear interaction 

of these two instabilities (one axisymmetric and the other non-axisymmetric) 

which arise when the radius ratio is nearly We use a multiple scale 

version of the Stuart-Watson method approach to derive the two coupled 

ordinary differential equations for the amplitudes of these perturbations. 

qC. 
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While t h e s e  two equat ions  cannot be solved e x p l i c i t l y ,  they neve r the l e s s  y i e l d  

s i g n i f i c a n t  information about t he  var ious poss ib l e  b i f u r c a t i o n s  t h a t  can t ake  

p l ace  i n  t h e  presence of t h e s e  per turba t ions .  Moreover, t h e  s t a b i l i t y  prop- 

e r t ies  of the equ i l ib r ium s ta tes  can be deduced. 

When cons ider ing  a growing boundary l a y e r ,  a se l f - cons i s t en t  a n a l y s i s  of 

wave i n t e r a c t i o n s  w i t h i n  i t  r equ i r e s  t h e  a p p l i c a t i o n  of t he  t r i p l e  deck theory  

as shown by H a l l  and Smith (1984). I n  channel f lows,  however, we do not  need 

t o  cons ider  t h e  e f f e c t s  of boundary layer  growth, thereby g r e a t l y  s impl i fy ing  

t h e  a n a l y s i s  while  s t i l l  g iv ing  a q u a l i t a t i v e  p i c t u r e  of what might happen i n  

a n  unbounded flow. It i s  i n  t h i s  context  t h a t  w e  wish t o  s tudy  t h e  Gort ler /TS 

i n t e r a c t i o n  i n  a curved channel.  This  study may be viewed as an ex tens ion  of 

t h e  work of Gibson and Cook (1974) i n t o  the weakly non l inea r  regime. 

.. 

2. MEAN FLOW AND PERTURBATION EQUATIONS 

L e t  (r ,  9 ,  z)  be the  c y l i n d e r i c a l  coord ina te s  with t h e  a x i s  of t h e  

c o n c e n t r i c  w a l l s  a long t h e  z-axis and Ri and Ro t h e  r a d i i  of t h e  i n n e r  and 

o u t e r  cy l inde r  r e s p e c t i v e l y  ( s e e  F igure  1). 

When t h e  flow between t h e  concent r ic  w a l l s  is  maintained by a cons t an t  

azimuthal  p re s su re  g r a d i e n t  (< 0) ,  t h e  s o l u t i o n  of t h e  momentum equa- 

t i o n s  y i e l d s  

u ( r )  = W(r) = 0, (2.1)  

where U(r)  and W(r) are the  r a d i a l  and a x i a l  mean v e l o c i t i e s ,  respec t ive-  

l y .  The azimuthal  v e l o c i t y  is  given e x p l i c i t l y  by 
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where v and p a r e  t h e  k inemat ic  v i s c o s i t y  and d e n s i t y ,  r e s p e c t i v e l y ,  

and rl = R /R . Here t h e  d i s t a n c e  from t h e  a x i s  is  normalized wi th  r e s p e c t  

t o  Ro, s o  t h a t  r v a r i e s  from TI a t  t h e  i n n e r  r a d i u s  t o  1 a t  t h e  o u t e r  

r a d i u s .  

i o  

A channel wi th  small cu rva tu re  w i l l  behave l o c a l l y  l i k e  a p lane  channel ,  

and f o r  i t  the azimuthal  v e l o c i t y  V(r) should approach t h e  f a m i l i a r  para- 

b o l i c  shape. A s  TI approaches 1, t h e  v e l o c i t y  

where 

2 
[ ( I  - r l )  5 ( 1  - 513 Ro a p  

2 v p  ae V ( r )  = - -- 

2 
(1  - r l )  

- Ro a p  
v m - - - -  2vp ae 

and 5 is  given by 

Thus 5 v a r i e s  from 0 t o  1 as r v a r i e s  from rl t o  1. Note t h a t  

i n  t h i s  l i m i t ,  v, i s  f o u r  t i m e s  t h e  c e n t e r  l i n e  v e l o c i t y .  

Based on ( 2 . 3 1 ,  ( 2 . 4 ) ,  ( 2 . 5 ) ,  and ( 2 . 6 ) ,  ( 2 . 2 )  can be simply expressed as 
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+ - 1 (1 - n) 2 ] v  I 2 r 

W uv 
+ (1 - n )  [ m z + R e - a  V v + - + -  r (1-n) azvl ’ a v  

r e  

where 

The f u l l y  non l inea r  d i s tu rbance  equat ions f o r  t h e  r a d i a l  v e l o c i t y  u ,  

az imutha l  v e l o c i t y  v, a x i a l  v e l o c i t y  w,  and the  c o n t i n u i t y  equat ion  are as 

fo l lows:  

(1-r1I2 - a  + R e -  f ( r )  ( 1  - n ) a ,  (2.10) 2 Z Z  r + [ R e ( l  - n ) a t  + 
r 
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- -  a w - R e  2 a z p - - -  (1 -n )  a w  
2 

as r as 

(1-n l2 - a + R e ( 1  - r l )  7 f ( r )  a O ] w  (2.11) 
Z Z  2 

+ [Re(l  - mt - 
r 

V a w  
r 0  as z 

+ (1 - n ) R e - a  w + u - + w a  W ,  

and 

(2.12) 

where t h e  q u a n t i t i e s  t h a t  appear i n  (2.91, (2.101, (2.11) and (2.12) are non- 

dimensionalized ve r s ions  of primed phys ica l  q u a n t i t i e s  shown below: 

P Pressure  p = 

pvrn 

Radial  p o s i t i o n  r = r’/R = (1 - TI)< + r l ,  n < r < 1 - -  0 

Axial p o s i t i o n  z = z’/d 

Azimuthal p o s i t i o n  0 = 0‘  

RO T i m e  t = t’/(r) 
m 

Radial  v e l o c i t y  u = u‘/(a) V 

Axial v e l o c i t y  w = w ’ / ( ~ )  V 
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Azimuthal velocity v = v’/Vm. 

Note that u’ and wc are scaled with respect to the diffusive velocity 

scale while v‘ is scaled with respect t o  the convective velocity scale. The 

mean flow is (0, Vmf(r), 0) and the nondimensionalized perturbation is (u, 

v, w) in the (r, 0 ,  z )  direction. The Reynolds number 

Re = Vm d / v ,  

where d = Ro - Ri. 
The effect of the purely azimuthal (non-axisymmetric) and the purely 

axial (axisymmetric) perturbation can be modelled by a general expression for 

the perturbation proportional to exp [at + i(kz + me)] where the non- 

dimensional axial wave number k = k’d, the non-dimensional azimuthal wave 

number m = me, and the non-dimensional complex growth rate 

can now be 

replaced by u, ik, im respectively within the linear part of the equations 

(2.9) to (2.12). 

‘m 
u = = u R + i uI. The partial derivatives at, a z ,  a, 

0 

The four equations of motion can be written as a set of six first-order 

ordinary differential equations, as was done by Eagles (1971). Thus we write 

so that the equations can be written as 

a q = a q + n  as- - -  

(2.13) 

(2.14) 



-8- 

where i s  a 6 x 6  mat r ix  r e p r e s e n t i n g  t h e  l i n e a r  c o n t r i b u t i o n  and - n 
i s  a s i x  element v e c t o r  con ta in ing  t h e  non l inea r  terms. The l a s t  t h r e e  ele- 

ments of the vec to r s  q and n are ze ro  a t  t h e  two channel wal ls .  The terms 

rep resen t ing  the  l i n e a r  and non l inea r  c o n t r i b u t i o n s  w i l l  be d i scussed  i n  t h e  

next s ec t ion  a f t e r  an e x p l i c i t  exp res s ion  f o r  

- - 

- q i s  given. 

3. PERTURBATION EXPANSION FOR NONLINEAR WAVE INTERACTION 

The pe r tu rba t ion  t o  t h e  mean flow is  expressed i n  t h e  form: 

q = € { ( A  E + - B F) + c.c.) - - 

2 2 * + E : * f ( C  E + D F + G EF + H EF) + c.c.1 

+ e2{J - Eo + - K Fo] 

+ E3{(L E 3 + M F 3 + N E ~ F *  + p E 2 F - - - 

2 * 2  + Q EF + R E F ) + c.c.) 
i - 

where - q is t h e  p e r t u r b a t i o n  vec to r  given by (2.131,  C.C. r e p r e s e n t s  t he  com- 

p l ex  conjugate of t he  terms i n  t h e  preceding parentheses ,  E is a s m a l l  ex- 

pansion parameter, r e p r e s e n t s  complex conjugat ion.  * 
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The vector 

.. 
represents the Gortler perturbation, 

represents the TS perturbation, 

E = exp(ikz), 

(3.4a,b) 

and 

F = exp(ime)exp(ut), 

u = u  +iUI. R 

.. - A E and - B F represent the Gortler and TS instabilities respectively. 

Other terms represent higher harmonics and the mean flow modification which 

arise due to the quadratic nonlinearity in the equations. 

The amplitude coefficients - C, 1, 2, and - H are due to the direct 

interaction between the TS and the Gortler instabilities. As self interaction 

occurs for each of these instabilities, the mean flow profile itself becomes 

modified through the generation of effects represented by - J and - KO The 

terms at order c3 arise due to the interactions of the terms of order E 

and the Gortler and TS perturbations. 

.. 

2 

.. 

A s  will become clear later, it w i l l  not be necessary to solve for the 

unknown coefficients at order E . By using the solvability condition for 3 
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t h e  equat ions governing - S and - T, t h e  e v o l u t i o n  equat ions  f o r  t h e  ampli tude 

of t h e  Gortler ( A )  and of t h e  TS ( B )  waves can be found. The method of - - 
mult ip le -sca les  used i n  t h i s  paper f o r  ob ta in ing  these  evo lu t ion  equat ions  

fol lows c lose ly  t h a t  suggested by Matkowsky (1970). 

Throughout, we w i l l  r e q u i r e  t h a t  t h e  las t  t h r e e  components of t h e  vec- 

t o r s  A t o  T are zero  a t  t he  two curved w a l l s  i n  o rde r  t o  s a t i s f y  t h e  ze ro  

v e l o c i t y  boundary condi t ions .  

- - 

For the p e r t u r b a t i o n  expansion (3.1), t h e  appropr i a t e  slower time va r i -  

a b l e  is  T defined by 

( 3  - 6 )  2 
T = €  t ,  

where E i s  t h e  same small expansion parameter used ear l ier .  This  g ives  

The Reynolds number R e  

b i l i t y  curve so  t h a t  

Hence, 

and 

Returning t o  (3.11, 

of  both 5 and T. 

2 a  - a a 
a t  a t  a T  
- - + - - + E  

i s  expanded about a va lue  

2 + E R1. Re  = R 0 

R1 2 1/Re = l / R O  - - 
R i  

2 2 R1 2 1 / R e  = l / R o  - 2 7 E 

RO 

(3.7) 

RO on t h e  n e u t r a l  sta- 

I 
(3.9) I 

(3.10) I 

I 

w e  now regard a l l  t h e  vec to r s  A t o  - T as func t ions  4 

For example: 



which s ta tes  t h a t  i n  t h e  neighborhood of t he  n e u t r a l  s t a b i l i t y  curve t h e  s o h -  

t i o n s  f o r  t h e  l i n e a r  problem, - A ( < )  and - B(<), adequately r ep resen t  t h e  

shape of t h e  p e r t u r b a t i o n s  i n  t h e  weakly non l inea r  regime. The ampli tudes of 

t hese  p e r t u r b a t i o n s ,  X(T) and Y(T), depend on t h e  s lowly varying time 

v a r i a b l e  T. 

The remaining v e c t o r s  can be represented s i m i l a r l y ,  e.g., 

Henceforth,  when r e f e r r i n g  t o  vectors  A t o  K w e  w i l l  only be con- 

s i d e r i n g  t h e i r  s p a t i a l  dependence because i t  can be shown t h a t  t h e  temporal 

dependence cance l s  o u t  throughout t h e  equat ions f o r  t h e s e  vec to r s .  

- - 

By s u b s t i t u t i n g  (3.1) and (3.7) t o  (3.10) i n t o  (2.13), w e  o b t a i n  an equa- 

t i o n  f o r  q of t h e  form: - 

(3.11) 
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tl, L2,  TI, T2,, T22 are l i n e a r  o p e r a t o r s ,  equ iva len t  t o  6 x 6  matrices. 

Thel r  dependence on t h e  d i f f e r e n t i a l  o p e r a t o r s  a z ,  a , ,  a t  and a T  is 

a Z  

i nd ica t ed  within the  square  bracke ts .  

N [ a  a ] (Q@Z} -2 z ’  8 

and a,. {A@ li) symbolizes q u a d r a t i c  terms comprised of t h e  components 

of - q. Here onwards w e  s h a l l  r e f e r  t o  Hl[az,a , ]  {i@~] by IU1. Since 

i n  t h e  ana lys i s  of (3.11) w e  w i l l  only be concerned wi th  terms of it 

w i l l  not  be necessary t o  cons ider  t h e  t e r m  ~ * ~ ~ [ 9 ~ , 9 ~ ]  {QQQ) 

O ( c 4 ) .  

Both El [az,a, 1 {A@ 31 and 

r ep resen t  non l inea r  terms con ta in ing  the  o p e r a t o r s  

O(c3),  

which i s  

The elements of t h e  ope ra to r s  are given e x p l i c i t l y  i n  Appendix A. 

To determine t h e  l i n e a r  s t a b i l i t y  problem f o r  t h e  G o r t l e r  and t h e  TS per- 
.. 

t u r b a t i o n s  a c t i n g  i n d i v i d u a l l y ,  terms of O ( E )  need t o  be considered.  From 

t h e s e  terms, those  wi th  c o e f f i c i e n t  E w i l l  g ive  t h e  l i n e a r  s t a b i l i t y  per tur -  

b a t i o n  equations f o r  t h e  G o r t l e r  d i s turbance .  S i m i l a r l y ,  t h e  terms wi th  
.. 

c o e f f i c i e n t  F w i l l  g ive  t h e  equat ions  f o r  t h e  TS d is turbance .  

A t  O ( E )  

(i) The terms wi th  c o e f f i c i e n t  E g ive  

dA 
- = L1[ik,O]A - + T1[O]A - - 

.. 
f o r  t h e  Gor t le r  p e r t u r b a t i o n .  

( i i )  The terms wi th  c o e f f i c i e n t  F g ive  
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for the Tollmien-Schlichting perturbation. 

From these equations, vectors A and B can be determined. Note the - - 
difference in the parameters of the operators in (i) and (ii), particularly 

.. 
the fact that a t  = 0 for the Gortler while for the TS, at = laI* In 

both cases we are considering neutrally stable perturbations. 

When collecting terms of 0(c2) for determining vectors C to K, the - - 
operators $, T21, T22 can be neglected because when they operate on - q, 
contributions of 0(tz2) are produced. As these operators are already pre- 

multiplied by E: , the net contribution from these terms will be O k 4 )  2 

and hence negligible. In the equations for - C to - K that follow, the non- 

linear contributions are contained in Of the six elements of the vector 

representing the contribution from 3, only the first three (nl, "2, n3) are 
non-zero, and these are listed following each equation. The discussion 

gl. 

following (3.5) gives the physical basis for presence of the vectors 

K. - 

At 0(c2) 

(i) The terms with coefficient E2 give 

where 

dC 
- =  L [2ik,O]C + T [O]C + nonlinear contribution from dg. 1 - 1 -  
- 

2 

N -1 ' 

c to - 

(3 .14 )  

2 
I -(1 - VI{- 7 -  a4 a+) 

ROr 
"1 
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+ a a (1 - 0) + ik a6a5 "2 = a4a2 4 5 
n3 = a4a3 + ik a6 2 . 

(ii) The terms with coefficient F2 give 

d D  
- = L [072im]D + T [2 ia ID + nonlinear contribution from d5 1 - 1 I -  
- 

where 
3 3 

2 
imb5Ro b4b5 

+ -1 b4b2 
r r n = (1-0) {=+ 2 

(iii) The terms with coefficient EF* give 

dG 
- = Ll[ik,-im1G + T1 [-ia IG + nonlinear contribution from dc - I -  
- 

where 

N17 (3.15) 

N (3.16) -1 i 
2a4 b4* im a4b5 ik b4 * a6 ik b * a im a b * 2a5b5 * 

n = ( 1 - n ) {  - 2 - 2 4 +  + -1 r 

a b * + b4a2 * im R a b * a4h5+b4a5 * *  ik a5b6 * 
- r r + . - 7 i d  

5 4  
R r  

0 
+ 

1 R r  RO I. Ro( 1-01 Ro( 1-0) 0 

0 5 5  + 4 2  n = (1 - 0 )  { (111) 2 

* * * * 
= -im(l - 0 )  R a b + a b + b a + ik b6a6 n3 0 5 6  4 3  4 3  



(iv) The terms with coefficient EF give 

dH 
- =  L [ik,im]H + T [ioI]H - + nonlinear contribution from 
dc 1 
- 

El, (3.17) 1 - 

where 

n = -(1 - 11) 1 

b ika6 + 2 b6ika 
Ro( 1-11 1 2 4 a4im b - - 1  1 

Ro(l-rl) 2a4b4 - Rgf - -  
2 

ROr 

a5b5 a im b4 

0 
- 5 + 

R r  r 

a4b5 + b4a5 4 2 +  5 5 +  a4b2 + b a a im b 
+ R r  0 [ RO(lq) r n = Ro(l - r l )  2 

RO(l-n) 
- im a b + a b + b4a3 + ik a6b6 . n3 - r 5 6  4 3  

(v) The terms with coefficient Eo give 

d J  
- =  L [O,O]J + T [O]J + nonlinear contribution from dc 1 - 1 -  -1 ' 
- N (3.18) 

where 
2(1-~) * 2ik * 

n =  R r a4a4 + 2 Iaqa6 - 
RO 0 1 

* * * * 
(1-n) (a4a5 + a a ) + ik(a5a6 - a5a6) n2 = a4a2 + a4a2 + - * * 

4 5  r 

* * 
n3 = a4a3 + a4a3 . 

(vi) The terms with coefficient Fo give 
, 

1 

~ 

1 



where 
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dK 

dc 
- 

L 1 [ O , O ] K  - + T 1 -  [O]K + nonlinear contribution from N1 ' (3.19) - =  

* 

* * * 
n 2 = b b  + b b  +- ('-'I {b4h2 + b4b5} 4 2  4 2  r 

- {imb5b6 * - imb b * } + b4b3 * + b4b3 * . Ro( 1-n ) 
"3 - .r 5 6  

So far we have collected terms with coe€ficient E and obtained the 

equations €or the spatial dependence of the neutrally stable Gortler and TS 
.. 

perturbations followed by collecting terms that have coefficient E 2 At 

O(E~), we will see that only equations of S and T need to be considered 

for obtaining the time evolution of the Gortler and TS amplitudes. S and 

T are functions of 5 and T. In the following, we shall again revert to 

writing the Gortler and TS perturbations as A X(T) and B Y(T) respec- 

tively, with A and B dependent only on 5 .  It will be seen from the 

form of the equations for S and T that the temporal dependence does not 

cancel out; indeed, it is this very property that allows us to get time evolu- 

tion equations for X(T) and Y(T). 

- - .. 
- 

- .. 
- - 

- - 
- - 

Collecting terms of O(E 3 ) with coefficient E, and with coefficient F, 

we obtain the equations for S and T: - - 

as 
- =  Ll[ik,OIS - + T1[O]S - as 
- 



-17- 

+ contribution from N -1 
and 

aT - = Ll[O,im]T + Tl[iuIIT - as 
- 

- 

(3.21) 

+ contribution from N . -1 

to both these equations involve a very 

large number of terms and are therefore not written explicitly at this 

21 The contributions from 

stage. They will however appear in the final equations for X(T) and Y(T). 

The homogeneous parts of (3.20) and (3.21) are the same as those of 

(3.12) and (3.13) for A and B respectively. In order that the non- 

homogeneous equations (3.20) and (3.21) have solutions, the nonhomogeneous 

- - 

parts of the these equations should be orthogonal to the adjoint column 

vectors and B respectively. These vectors are solutions of the 

following equations: 

N 

- - 

dX - - dc = -[Ll[ik,O] + Tl[O]]T 3 

T -  d% 
- = -[Ll[O,im] + Tl[iuI]] 
ds 
- 

(3.22) 

(3.23) 

N N " "  

" I Y "  

and iT = (bl ,b2,b3,b4,b5,b6). Unlike - where iT = (2 ,a ,a ,a ,a ,a 1 - 1 2 3 4 5 6  

the boundary conditions for the equations for A and - B where the last three 

of their components are zero, here the first three components of 

- 
and - - 

I are zero at the boundaries. 

! 
I 
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Using the orthogonality condition, we obtain the following 

for X(T) and Y ( T ) :  

1 
ds[xT - L2[ik,01A - X(T) + xT - .  T22[aT]A X(T) 

0 

and 

+ “Ar (contribution from - N1)] = 0 - 

-T 1 
1 ds[%T - L2[0,im]B - Y(T) + - B T21[ioI]B - Y ( T )  
0 

+ %T T [ a  ]B Y(T) + iT (contribution from N )] = 0. 22 T - - -1 - 

The terms representing ET contribution from El)  and (E -T . 
tion from H1) are given in Appendix B. After integrating over 

equations can be written as 

and 

where Bi,6i, and ni, (i = 1 , 2 ) ,  are coefficients obtained from 

equations 

( 3 . 2 4 )  

( 3 . 2 5 )  

cont ribu- 

5, these 

( 3 . 2 6 )  

( 3 . 2 7 )  

( 3 . 2 4 )  and 

( 3 . 2 5 ) -  is a measure of the deviation from the neutral stability curve as 

is given by ( 3 . 8 ) .  It appears in (3.26) and (3 .27 )  because it is a common 

factor in matrix L2 in (3.24) and ( 3 . 2 5 ) .  Equations (3.26) and (3 .27 )  are 

the coupled Landau equations which determine the time evolution of the ampli- 

tudes of the Gortler and TS perturbations. The analysis of these equations 

will be presented after the next section. The following section gives a brief 

R1 

.. 

I 
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description of the numerical method used for obtaining the coe€ficients - A 

to - K in (3.1). A l l  the terms in the perturbation expansion have been 

verified by using the symbolic manipulation language MACSYMA. 

4. COMPUTATION OF THE COEFFICIENTS 

The equations governing the 3 dependence of the coefficients - A to 

K are given in the previous section. - A and - B are described by a set of 

homogeneous ordinary differential equations while the equations for the re- 

maining amplitudes are nonhomogeneous. 

- 

A fourth-order finite difference scheme (Malik, Chuang, and Hussaini 

(1982)) was used to solve these equations. For details of the method, the 

reader may refer to Malik, et al. (1982) and Hall and Malik (1986). The cal- 

culations were performed on a nonuniform grid which clusters the points near 

the walls. 

relation 

where 

and 

In order to 

A suitable distribution of grid points was obtained using the 

= (sin(nxi/2) + 1)/2, <i 

l < i < N  - -  x =L [2i - 1 - N ] ,  i N-1 

N = total number of grid points. 

determine the vectors A to - K to 3 digit accuracy, 51 grid 

points were sufficient €or the range of Reynolds number and wave numbers that 

we considered. 
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The c o e f f i c i e n t s  of t h e  Landau equat ions  der ived  i n  t h e  last  s e c t i o n  are 

f u n c t i o n s  of the  v e c t o r s  A t o  K. These v e c t o r s  become dependent on t h e  

slow t i m e  v a r i a b l e  T only when w e  p e r t u r b  t h e  flow from i t s  n e u t r a l l y  

- - 

s t a b l e  s t a t e .  I n  t h e  neighborhood of t h e  n e u t r a l  s t a b i l i t y  curves  f o r  t h e  

G o r t l e r  and TS p e r t u r b a t i o n s ,  t h e  shape of t h e  v e c t o r s  ( a s  func t ions  of < )  
.. 

remains unchanged, and hence we only need t o  cons ider  t h e  shapes of t h e  

n e u t r a l l y  s t a b l e  modes. 
.. 

The familiar n e u t r a l  s t a b i l i t y  curves  f o r  t he  l i n e a r  G o r t l e r  and TS 

per turba t ions  a r e  presented  i n  Figures  3 and 4, r e spec t ive ly .  Here, t h e  

g e n e r a l l y  accepted convent ion of l a b e l l i n g  one of t h e  arms of t h e  s t a b i l i t y  

curve as "lower" and t h e  o t h e r  as "upper'' i s  used. To analyze t h e  d i f f e r e n t  

k inds  of poss ib le  i n t e r a c t i o n s  between a G o r t l e r  and a TS p e r t u r b a t i o n  a t  an 
.. 

a r b i t r a r y  Reynolds number Ro cons ider  t h e  schematic  diagram of Figure 5. 

(Refer  t o  t h i s  f i g u r e  and i t s  cap t ion  f o r  t h e  abbrev ia t ions  GL, GU, TSL, TSU 

used i n  what fol lows.)  A G o r t l e r  p e r t u r b a t i o n  GL wi th  wave number kl and 

Reynolds number R e  s l i g h t l y  d i f f e r e n t  from Ro (Re = E$-, + E: R1) can 

i n t e r a c t  with a TS wave wi th  the  same Reynolds number but  wi th  wave numbers 

.. 

2 

m l  o r  m2 corresponding t o  TSL and TSU respec t ive ly .  S i m i l a r l y ,  GU wi th  

wave number k2 can i n t e r a c t  with e i t h e r  TSL o r  TSU. So, i n  a l l  t h e r e  are 

f o u r  poss ib le  i n t e r a c t i o n s .  

It can be seen  from Figure 2 t h a t  f o r  T-I = R1/R2 - = 2.179 x - % .. 
t he  c r t t i c a l  Reynolds number f o r  t h e  G o r t l e r  and TS p e r t u r b a t i o n s  i s  

8 x 5772.2 46176 where 5772.2 i s  t h e  c r i t i c a l  Reynolds number f o r  a 

p lane  channel flow based on h a l f  channel width and c e n t e r l i n e  v e l o c i t y  (Orszag 

(1971)). It i s  f o r  t h i s  va lue  of r\ t h a t  w e  compute t h e  ampli tudes - A 

t o  K for  46176 < Ro - < 120,000. This range i s  probably s u f f i c i e n t  t o  - - 



r e v e a l  t h e  p o s s i b l e  i n t e r a c t i o n s .  R e s u l t s  f o r  o t h e r  va lues  of n i n  t h e  

can be obtained us ing  a s imple argument t h a t  we w i l l  neighborhood of 

p re sen t  i n  the  next s e c t i o n .  

n C  

The components of A t o  - K f o r  each va lue  of RO are used t o  compute 

of t he  two Landau equat ions .  t h e  c o e f f i c i e n t s  B , ,  d l ,  n l ,  B 2 ,  6 * ,  and TI 

For computing t h e s e  c o e f f i c i e n t s ,  vectors  - A and - B need t o  be normalized. 

This  w a s  done by d i v i d i n g  - A by i ts  c e n t e r l i n e  azimuthal  component ( cen te r -  

l i n e  va lue  of as), and d iv id ing  - B by i t s  c e n t e r l i n e  radial  v e l o c i t y  cam- 

ponent ( c e n t e r l i n e  va lue  of b4). Since B1 and do not  depend on t h e  

presence of a TS p e r t u r b a t i o n ,  each of these has  a unique va lue  f o r  each p o i n t  

on t h e  n e u t r a l  s t a b i l i t y  curve. When both GL and GU are considered f o r  a 

f i x e d  Reynolds number, B 1  and 6 ,  w i l l  each have d i f f e r e n t  va lues  on t h e  

two arms of t h e  n e u t r a l  s t a b i l i t y  wave, corresponding t o  t h e  d i f f e r e n t  wave 

numbers. A similar argument a p p l i e s  t o  B 2  and n 2  which are independent 

of t h e  G o r t l e r  pe r tu rba t ion .  These c o e i f i c i e n t s  w i l l  be f u r t h e r  d i scussed  i n  

t h e  next  s e c t i o n .  

- 
2 

.. 

5. SOLUTION OF THE LANDAU EQUATIONS 

I n  t h i s  s e c t i o n ,  w e  analyze the poss ib le  i n t e r a c t i o n s  by s tudying  t h e  

p r o p e r t i e s  of t h e  coupled Landau equations.  These p r o p e r t i e s  are d isp layed  i n  

t h e  form of b i f u r c a t i o n  diagrams which show t h e  ampli tudes of t h e  equ i l ib r ium 

s ta tes  and t h e i r  s t a b i l i t y  p rope r t i e s .  

Equat ions (3 .26 )  and (3.27) can be w r i t t e n  i n  terms of 1 X I 2  and 
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where are real  p a r t s  of t h e  corresponding 

Landau c o e f f i c i e n t ,  e.g., B 2  = B2R + iB&, .  It i s  found t h a t  B 1  i s  real 

- By s u i t a b l y  s c a l i n g  t h e  ampli tudes X and Y it is  and so  

p o s s i b l e  t o  make 6 1  = -1 and In2!  = 1 so as t o  f a c i l i t a t e  t h e  a n a l y s i s  

of t h e  equations.  For n o t a t i o n a l  convenience,  we r ep lace  R1 i n  (3 .26 )  and 

(3 .27 )  by 11 i n  t h e  above equat ions .  From he re  on we s h a l l  drop t h e  sub- 

'1 - '1R* 

s c r i p t  R because a l l  t h e  c o e f f i c i e n t s  of t h e  equa t ions  are real. .. 
The growth rates wi th  r epec t  t o  T ( f o r  u = 1) of t h e  G o r t l e r  (B1) 

and TS ( 8 , )  p e r t u r b a t i o n s  are shown i n  F igure  6 and Figure 7 respec- 

t i v e l y .  In Figure 7 i t  should be noted t h a t  t h e  nega t ive  va lues  of 

corresponds t o  TSU i n  F igure  4. 
6 2  

and 6 2  depending on t h e  types  of n l  There are two graphs each f o r  
.. 

q1 poss ib l e  i n t e r a c t i o n  between a G o r t l e r  and TS wave. Figure 8a shows 

versus  Reynolds number f o r  t h e  i n t e r a c t i o n  of GL wi th  TSL and TSU and Figure  

8b d isp lays  t h e  same v a r i a b l e s  f o r  t h e  i n t e r a c t i o n  of GU wi th  TSL and TSU. 

F igures  9a and 9b g ive  graphs f o r  

F igures  8a and 8b. F igure  10 shows a graph of Reynolds number versus  

6 2  f o r  t h e  same i n t e r a c t i o n s  as g iven  i n  

n 2 *  

The graphs of t he  c o e f f i c i e n t  of t h e  Landau equat ion  mentioned i n  t h e  

l a s t  two paragraphs have been computed f o r  (1 - n) = (1 - n c )  = 2.179 x 

which corresponds t o  a channel wi th  very small cu rva tu re  and one f o r  

which t h e  c r i t i c a l  Reynolds number f o r  t h e  G o r t l e r  and TS p e r t u r b a t i o n s  are 
.. 

i d e n t i c a l .  I n  what fo l lows  w e  w i l l  extend t h e  a n a l y s i s  t o  channels  f o r  n 

i n  t he  neighborhood of q c .  

l'Bl I n  (5.1) and (5.2) t h e  c o e f f i c i e n t s  of 1 X I 2  and l Y I 2  are  

and pB2 r e s p e c t i v e l y ,  which shows t h a t  t h e  l i n e a r  growth rates of 1 X I 2  

and l Y I 2  a r e  p ropor t iona l  t o  t h e  d e v i a t i o n  p from RO (Reynolds number 

= RO + E p). Simi la r ly ,  i t  i s  reasonable  t o  assume a l i n e a r  dependence of 2 
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t h e  growth rate on t h e  d e v i a t i o n  from the r a d i u s  r a t i o  

(1 - n )  = (1 - n c )  + c2v 

t o  be t h e  expansion parameter given by (3.8), t he  growth rates of 1 X I 2  and 

l Y I 2  would a l s o  be l i n e a r l y  dependent on V .  The e f f e c t  of t h e  d e v i a t i o n  

from on the  c o e f f i c i e n t s  of t he  non l inea r  terms of t h e  Landau 

e q u a t i o n s  is  of a h i g h e r  o r d e r  than we a r e  concerned with and so  w e  s h a l l  only 

cons ide r  i t s  e f f e c t  on the  growth r a t e  through t h e  parameter 

qc .  
I f  w e  write 

a s  a pe r tu rba t ion  from (1 - q c ) ,  and t a k e  E 

(1 - nc)  

v .  

Equations (5.1) and (5.2) can now be w r i t t e n  as 

The zero-growth rate curves f o r  1 X I 2  and l Y I 2  are s t r a i g h t  l i n e s  i n  

t h e  ( v , ~ )  plane,  pas s ing  through t h e  o r i g i n  and having s l o p e s  of ( -y1/Bl )  

and ( - y 2 / B 2 )  r e s p e c t i v e l y .  Numerical computations show t h e  f i r s t  s l o p e  t o  

be of o r d e r  -10’ and t h e  second t o  be approximately zero;  t h e r e f o r e  i n  what 

fo l lows ,  w e  t a k e  

G o r t l e r  and TS waves were f i x e d  a t  t h e i r  va lues  f o r  

y2  = 0. To compute these  s l o p e s ,  t h e  wave numbers f o r  t h e  

which i s  
55  

p = 0 ,  v = 0 ,  

I equ iva len t  t o  R = Rec  and (1 - 0 )  = (1 - n c ) .  The s l o p e s  were found f o r  

t h i s  neighborhood f o r  t h e s e  f i x e d  wave numbers. A s  can be expected,  t h e  

s l o p e s  are of t h e  same o r d e r  of magnitude as those  of t h e  curves f o r  t h e  

c r i t i c a l  Reynolds number ve r sus  (1 - n )  given by Gibson and Cook (see 

F igure  2) .  Note t h a t  t h e  wave numbers change along t h e i r  curves ,  while  i n  ou r  

case we keep them cons tan t .  We computed t h e  change i n  Reynolds number wi th  

change i n  (1 - n )  a t  t h e  cross-over point shown i n  Figure 2. 

I 

i 
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There a r e  four  p o s s i b l e  s teady  s ta te  s o l u t i o n s  t o  (5.3) and (5.4):  

B1 vy 1 
( i i )  l Y I 2  = 0, ! X I 2  = - , 1 ( l J  +8,) 

L L 

lJ 
B2 

O 2  
( i i i )  1 X l 2  = 0, = - - 

(5.6a, b) 

(5.7a, b) 

(5.8b) vy 1 
l Y I 2  = [-S2B1(lJ + +  + 61B21J]/(T1162 - 6 p 2 )  

1 

To assess  t h e  s t a b i l i t y  of t hese  s t a t e s ,  i t  i s  necessary t o  l i n e a r i z e  t h e  

equat ions  about t hese  s ta tes .  The reader  may r e f e r  t o  Boyce and DiPrima 

(1977) f o r  a d i s c u s s i o n  of t h e  s t a b i l i t y  a n a l y s i s  of such coupled equat ions .  

Table 1 summarizes t h e  va lues  of Bi,ni ,  and 6 ,i = 1 , 2  , f o r  t h e  i 

four  poss ib le  i n t e r a c t i o n s .  This t a b u l a t i o n  i s  mainly t o  f a c i l i t a t e  t h e  

a n a l y s i s  and d i scuss ion  of t hese  i n t e r a c t i o n s ;  o t h e r  va lues  can be obtained 

from t h e  graphs f o r  t h e s e  q u a n t i t i e s .  This  t a b l e  of r e s u l t s  can be used t o  

show t h a t  many p o s s i b l e  equi l ibr ium s ta tes  e x i s t  depending on t h e  Reynolds 

number. Here w e  s h a l l  concen t r a t e  on the  t h r e e  cases which we b e l i e v e  t o  be 

of most p r a c t i c a l  importance. The b i f u r c a t i o n  p i c t u r e s  f o r  t h e  o t h e r  cases 

can be found i n  say  Keener (1976) or  Guckenheimer and Holmes (1984). 

The three  cases w e  cons ide r  are: 

2 .. 
( a )  I n t e r a c t i o n  of G o r t l e r  and TS waves f o r  n = 0, + E V and 



2 Re 5: Rec + E p. Here we consider the cases when the Reynolds number 

is at or very close to the critical value for both perturbations, and 

and unstable solutions of the Landau equations respectively. We note that the 

t TS mode can never be in stable equilibrium without the presence of a Gortler 

mode. In contrast to this situation, the Gortler mode can exist alone and be 

.. 
.. 

with wave numbers corresponding to the critical Reynolds number and 

I stable to small perturbations. However, the finite amplitude states in these 

figures are unstable to sufficiently large perturbations. This instability 

leads to 1x1 and IYI terminating in a finite time singularity as in the 

its vicinity. Representative values for this case can be found near 

the end of each of Sections A - D in Table 1. 

(b) Interaction of TSL with GL. 

(c) Interaction of TSL with GU. 

Case (a): In this case, it is found that n1/n2 > Bl/8, > 61/62, 
.. 

di < 0 ,  ni > 0 ,  Bi > 0 for i = 1,2. For v > 0 ,  the Gortler mode is the 

most unstable on the basis of linear theory and for v < 0 the TS wave is 

the most unstable. 

The solution (5.5a,b) exists for all values of p whilst (5.6a,b) and 

(5.7a,b) exist for p > -uyl/B1 and < 0 respectively. The mixed mode 

solution (5.8a,b) can exist for either a finite, zero or semi-infinite range 

of values of p depending on f31,ni,6i. In the present case, we find 

that if v < 0 ,  the mixed mode does not exist. However, €or v > 0 the 

mixed mode exists for a finite range of values of p including the 

origin. The bifurcation diagrams for this case are shown in Figures 

(lla,b). In these figures, continuous and broken lines correspond to stable 



-26- 

case for a TS wave in a straight channel. Thus, the threshold amplitude 

phenomenon of Meksyn and Stuart (1951) persists in the presence of Gortler 

vortices. It is not possible to quantify the effect of the Gortler mode on 

.. 
.. 

the threshold amplitude. However, a phase plane analysis of the Landau equa- 

tions shows that the Gortler mode significantly reduces the size of the finite 
.. 

amplitude perturbation required to induce the finite time breakdown of the 

equations. In that sense, the Gortler mode has a significant effect on the 
.. 

subcritical breakdown of the TS waves. However, for a sufficiently low level 

of background noise, we should expect that a stationary Gortler mode could be 
.. 

set up by slowly increasing the Reynolds number. 

Case (b): Here we consider the interaction of TSL with GL. In this 

situation, other modes of instability can occur at lower Reynolds number but 

since this situation is relevant to the corresponding external boundary layer 

problem we believe it to be of some importance. This is because in this case, 

as in Case (c), the TS wave now bifurcates supercritically and the possibility 

of stable mixed mode solutions must now be investigated. Here we concentrate 

on the interaction of such a mode with a GL vortex. Case (c) will be con- 

cerned with the interaction with a GU vortex. 

The parameters 61,62,n1, and n 2  are all negative and satisfy 

A routine calculation lead to the bifurcation pictures shown in Figures 

(12a,b). We see that the mixed mode always bifurcates from the "pure-mode" 

which is the least unstable on the basis of linear theory. This bifurcation 
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leaves the pure-mode stable so that at sufficiently large p ,  both pure 

modes are possible stable equilibrium states. However, in the absence of any 

finite amplitude background noise we expect that the pure mode which is the 

most unstable on the basis of linear theory would be set up when the Reynolds 

number is gradually increased. 

Case (c): Here we consider the interaction of TSL and GU. For this 

is positive. The relationship n l  case 61 7627n2 are negative whilst 

between the ratios of the coefficients is: 

.. 
The bifurcation pictures are shown in Figures (13a,b). If the Gortler mode is 

the most unstable on the basis of linear theory, then there is no secondary 

bifurcation and the TS mode is never stable. When the TS wave bifurcates 

first, then it is initially stable before it suffers a secondary bifurcation 

to a stable mixed mode. The mixed mode then meets the "pure8' Gortler mode 
.. 

which changes from being unstable to stable. Thus, for both v > 0 and 

v < 0 at sufficiently large values of p the only stable state possible 

is that corresponding to a finite amplitude Gortler vortex. Hence, the 

Gortler mode effectively prevents the finite amplitude growth of the TS wave. 
.. 

6 .  CONCLUSIONS 

In this paper we have considered the interaction of two types of pertur- 

bations in a curved channel flow; these are the travelling nonaxisymmetric 
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wave (TS) and the axisymmetric vortical perturbation referred to as the 

Gortler vortices. 
.. 

By using the Stuart-Watson approach, two coupled equations for the ampli- 

tudes of TS and the Gortler perturbations were obtained. Coefficients of 

these equations have been calculated for their interaction, from Reynolds 

number starting at the common critical value for both the perturbations 

up to a large enough value which we think covers all the possible inter- 

actions. We have, however, concentrated our attention on those interactions 

which we think are significant in external flows. 

.. 

Rec 

We have seen in the previous section that f o r  R close to Rec the only 

possible stable "pure state" to be Gortler vortices. For a finite range of 

Reynolds numbers, a mixed mode is possible, but in any experimental investi- 

gation of this problem, we expect this range to be too small to be detected. 

However, the threshold amplitude effect associated with a finite amplitude TS 

wave remains intact and indeed is augmented by the curvature. In external 

f lows  such as a Blasius boundary layer o r  an attachment line boundary layer, 

this effect, if repeated, would make these flows more sensitive to background 

noise. 

.. 

Consideration of the interaction between a TS perturbation corresponding 

to the lower branch of its neutral curve with a Gortler perturbation belonging 

to the lower branch of its neutral curve, shows that a stable finite amplitude 

perturbation of either type can be set up depending on which one is most 

linearly unstable. The value of the radius ratios determines which of 

the perturbations is most unstable. 

.. 

F o r  the interaction of the TS perturbation corresponding to the lower arm 

of its neutral stability curve with the Gortler perturbation corresponding to 
.. 
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.. 
the upper arm of its neutral stability curve, we find that the Gortler vortex 

prevents the occurrence of a finite amplitude TS wave far from the neutral 

curve. When a TS wave is the most linearly unstable of the two perturbations, 

a finite amplitude TS wave develops, the amplitude of which increases as the 

Reynolds number increases further from its value on the neutral curve until a 

"mixed" mode appears. Here both the TS and Gortler have finite amplitudes. 

A s  Reynolds number increases further, the mixed mode bifurcates into a stable 

Gortler mode. In the case when the Gortler mode is the most linearly 

unstable, only a finite amplitude Gortler state is possible as the Reynolds 

number increases from a value on the neutral curve. 

.. 

.. .. 
.. 

For external flows, an asymptotically self-consistent description of non- 

linear TS waves has been given by Smith (1979). Here the disturbance was 

described by "Triple Deck" theory and the streamwise scaling for the TS wave 

corresponds to lower branch TS waves in our problem. Further it was shown 

that lower branch TS waves bifurcate supercritically so we can expect that our 

results for the interaction of TSL waves and Gortler vortices in channel might 

have implications to the external flow problem. Of course, the effect of 

boundary layer growth might negate the validity of us drawing these con- 

clusions, however, we believe that our calculations show what is the likely 

.. 

.. 
effect of the possible interactions involving TS waves and Gortler vortices. 

In a later publication, we will report the numerical simulations of the 

interaction in curved channel flow between such perturbations. 
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APPENDIX A 

Here t h e  nonzero components of t he  ope ra to r s  of (3.11) are given expl ic -  

i t l y  i n  terms of t h e i r  row-column loca t ion ,  i .e.,  (1 ,2)  w i l l  r e f e r  t o  element 

i n  f i r s t  row and second column. 

Ll[az,a , ]  i s  a 6 x 6  matrix:  

a Z  (1 ,3)  = - - 

2 (1-n > 2  
a, + f ( r ) ( l - n )  + a, 

2 ( W 2  

Ro IT Ro 
2 (1 ,5)  = - 
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t 

(5,2) = (6,3) = 1. 

is a 6x6 matrix: 

(1-n 1 ( 1 , 4 )  = - - a t  RO 

L2[az,ae] is a 6x6 matrix: 

(1,2) = (1 - n) r a ,  1 

R r  
0 

(1,3) - 
Z 
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(1-n)2 R1 - a  2 R1 2 ( i , 5 )  = (1  - 0 )  -. - a  - 
R: r 2 r R: e 2 e  

2 
(1 - n) a, R1 2 ( 2 , 4 )  = -- 2 2  R r  0 

( 3 , l )  = 2 RORlaz 

T21[atl is a 6x6 matr ix:  

R, 
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T22[ar]  i s  a 6x6 matr ix:  

(sad i s  a 6 component column vec to r  
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APPENDIX B 

Here we g ive  t h e  nonl inear  terms of 0(c3)  which form p a r t  of t h e  

coupled Landau equat ions .  Note the  presence of cubic  terms such a s  

lX(.r)I2 X(.r), etc.  The lower case le t ters  are elements of the  vec to r s  given 

Each of t hese  elements a r e  i n  c a p i t a l s ,  e.g., 5 = (g1,g2,g3,g4,g5,g6) T 

func t ions  of 5 .  

(i) ( c o n t r i b u t i o n  from N ) = - -1 

+ [ - ik  c6 a5 * + 2ik a * c + j 6 i k a 5 ]  X(.r)lX(T>I 2- a2 
6 5  

+ - 1 [ - ik  c a * + 2ik  a4 * c6 + j 4 i k a 6 ]  X < ~ > l X ( . r > l  2- a l  
D 2 4 6  
"0 

* * 
-ik c a + 2ik  a6 c4 + j 6 i k a 4 ]  X(.r)(X(.r) l2  ;l 

1 - T [  6 4 
RO 
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* 2 -  * + [ - ik  c6 a6 + 2 i k  a6 c6 + j 6 i k a 6 ]  X ( T ) ~ X ( T > ~  
a3 

2- (1-0 * * - - [ - i m  h b + b i m  h + g i m  b - i m  b5 g4] X(T)IY(T)(  al 
R r  4 4  5 4 5 4  0 

2- * + [b6  i k  h5 + b6 i k  g5 + i k  a5k6] x ( T > l y ( T > (  a2 

2- (1-n) * * + R- [ - i m  h b + b i m  h + g imb - i m  b5 g5] X ( T > ~ Y ( T > ~  a2 
O r  5 5  5 5 5 5  

* 2- (‘-‘I [ h  b + b h + g b + b4g5 + a4k5 + a5k4] X ( ~ > l Y ( . r > l  a2 + -  * 
4 5  4 5  4 5  r 

* 2- * + [h4b2 + b4h2 + g4b2 + b4g2 + a2k4 + a4k2] X(T>ly(T)l a2 

0 [ - i m  h5 b6 * + b * i m  h + g i m  b - i m  b5 g6] X(T)IY(T)I 2- a3 

+- (‘-‘I [2(h5bz + g5b5 + asks)] X(T)lY(T)12:l 

+ [b6  * i k  h6 + b6 i k  g6 + k6 ik  ag]X(T)(Y(T)l 2 -  a3 

R (1-q) 

r 5 6 5  6 
+ 

r 

+ [h4b3 * + b4h3 * + g4b3 + b4g3 + a3k4 + a4k3] X(T IY(.r I 2- a3 1 

~ 

(1-q 1 * * 
1 + - [ - i m  h4 b5 + b4 i m  h5]X(?) ( Y ( T )  12: 

Ro 

- - 1 [b6 ik  * h4 + b6ik g4 + i k  a4k6] X(T)IY(T)(  2 -  al  
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[b4 * ik h6 + b4 ik g6 + ik a k ] X(T)/Y(T)( 2- al 
6 4  

($5) :T (contribution from N ) = - -1 

+-  ('-I r [2 d5bg + 2k5b5] Y(T)IY(T)~~%~ 

( 1-rl) * * 2- - - [-im d b + 2im b d + k5 im b4] Y(.r)IY(.r)l bl 5 4  5 4  ROr 

+ [ d4bi + b4 * d2 + k4b2 + b4k2] Y(T) IY(T) I 2- b2 

RO(l-n) [-im d b * + 2im b5 * d5 + k5 im b5] Y(T)IY(T)l 2- b2 
5 5  + 

1: 

+ - (1-rl) [d b * + d b * + k4b5 + b4k5] Y(T)IY(.t)l 2- b2 
r 4 5  5 4  

* * 2- b + 2im b5 d6 + k5im b6] Y(T) IY(T) I b3 
(1-0 )Ro 

[ -im d 5 6  + r 

(1-q 1 * * 2- + - [-im d4 b5 + 2im b4 d5 + k5imb5] X(.r>IY(r)( bl 
Ro = 
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+ [ - ik  h6 a5 * + a * i k  h + g * ika5  - ik  a6 g5] * Y(T)IX(T)I~~~ 
6 5 6  

* 2- * 
(l-') [ a4  i m  h + a i m  g + imb5j4] Y(T>~X(T>~ bl 

5 4 5  
+-  R r  0 

i 1 * * * [ - ik  h4  a6 + a ikh  + g4ika6 - ik  a g* ]  Y(T> IX(T> I 2il 
4 6  4 6  

* * 2- 1 * * - -  [ - ik  h a + a i k  h4 + g i k a 4  - ik  a g ] Y(.r>lX(.c>l bl 
6 4  6 6 6 4  

* 2- * * * 
+ b 4 a 3  + a4h3 + g4a3 + a483 + b3j4 + b4j3] Y(T>(~(.c>( b3- 
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FIGURE CAPTIONS 

Figure 1 Curved channel with flow in the azimuthal direction. The walls 

are parallel to the z-axis. Radius ratio rl = R /R and 

channel width 
i o  

d = Ro - Ri. 
.. 

Figure 2 Critical Reynolds number versus (1 - 0 )  for Gortler and TS 
perturbations. At the cross-over point of these curves, 

= 8 x 5772.2 and (1 - qC) = 2.179 x This figure Re C 
is a schematic adaptation of Figure 1 in Gibson IS Cook (1974). 

.. 
Figure 3 Neutral stability curve for the Gortler perturbation. Reynolds 

number versus axial wave number k. 

Figure 4 Neutral stability curve for the Tollmien-Schlichting perturba- 
tion. Reynolds number versus azimuthal wavenumber m. 

1. 

Figure 5 The two neutral stability curves (a) Gortler neutral stability 

curve (b) TS neutral stability curve for For this 

case, the critical Reynolds number is identical for the two per- 

turbations. GL and GU refer to the lower and upper arms of the 

Gortler stability curve. TSL and TSU refer to the lower and 

upper arms of the Tollmein-Schlichting stability curve. 

ri = ne. 

.. 

.. 
Figure 6 Reynolds number versus growth rate B 1  of the Gortler pertur- 

bation. 

Figure 7 Reynolds number versus growth rate B 2  of the TS perturba- 
tion. Note the negative f3* for part of TSU. 

Figure 8 Reynolds number versus q l  for perturbations corresponding to 

the two arms GL and GU of the Gortler stability curve interacting 

with TSL and TSU: 

.. 
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(a) GL interacting with TSL and TSU. 

(b) GU interacting with TSL and TSU. 

for perturbations corresponding to 

the two arms GL and GU of the Gortler stability curve interacting 

with TSL and TSU: 

(a) GL interacting with TSL and TSU. 
(b) GU interacting with TSL and TSIJ. 

& 2  .. Figure 9 Reynolds number versus 

Figure 10 Reynolds number versus n 2 .  

.. 
Figure 11 Bifurcation diagrams €or the interaction of the Gortler and TS 

perturbations for Reynolds number at or close to Rec where 

and 

ni > 0, Bi > 0, Csi < 0, i = 1,2. 

.. 
(a) (v > 0). The Gortler mode is the most linearly unstable 

mode in this case. The TS mode is subcritically unstable. 

(b) (v < 0 ) .  The values of l~ at P and Q are 

respectively 

-VY 1 /B 1 

and 

Figure 12 Bifurcations diagrams for the interaction of GL and TSL where 

n 1 / n 2  > B 1 / B 2  > 6 p 2  
and 

1 



I 

Tli < 0, Bi > 0, 6i < 0, i = 1 , 2 .  

(a) (v < 0). The TS mode is the most linearly unstable mode in 

this case. The value of p at Q is 

.. 
(b) (v > 0). The Gortler mode is the most linearly unstable 

mode in this case. The value of l~ at P is 

Figure 13 Bifurcation diagrams for the interaction of GU and TSL where 

and 

y > 0 ,  n 2  < 0, Bi > 0, 6i< 0 ,  i = 1,2. 

(a) (v < 0). The TS is the most linearly unstable mode in this 

case. The values of l~ a t  P and Q are respectively: 

and 

62 
( 1  ---) 

T12 6 1  

-VY1/B1 

&1 $ 2  
l JQ  = . 

(1 -r+ 
2 1  

.. 
(b) (v > 0). The Gortler mode is the most linearly unstable 

mode in this case. 
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TABLE 1 

Reynolds 
number 

RO k m $ 1  6 1  n1 $ 2  6 2  6 , / b 2  n 1 / n 2  B 1 / B 2  

.120(6) 

.800(5) 

.700( 5 )  
4 .675(5) 
g .625(5) 

.600(5) 

. 5 5 0 ( 5 )  

. 4 8 0 ( 5 )  

.468(5) 

: .575(5) 

.a55 
1.35 
1.60 
1.67 
1.86 
1.98 
2.11 - .  
2.27 
3.08 
3.44 

-1.0 
-1 .o 
-1.0 
-1.0 
-1.0 
-1 .o 
-1.0 
-1 .o 
-1.0 
-1 .o 

.19(-2) 
-33C-2) 
.39(-2) 
.40(-2) 
.44(-2) 
.46(-2) 
.48(-2) 
.51(-2) 
.54(-2) 
.53(-2) 

-.16 
-.12 
-.89(-1) 
-.79(-1) 
-.53(-1) 
-.37(-1) -. 1N-l) 

.53(-2) 

.12 

.17 

-.36(2) -. 2R( 2) 
- . 2 5 ( 2 )  
-.25(2) 
-.23(2) 
-.21(2) 
-.20(2) 
-.18(2) 
- . 4 3 ( 2 )  
-.25(2) 

.28(-1) 

.35(-1) 

.39(-1) 

.41(-1) 

.44(-1) 

.47(-1) 

.51(-1) 

.56(-1) 

.24(-1) 

.41(-1) 

.43(-1) 

.60(-1) 

.68(-l)  

.71(-1) 

.78(-1) 

.83(-1) 

.88(-1) 

.94(-1) 

.13 

.15 

.120(6) 12.9 .656(5) .64(-3) -1.0 . 2 5 ( 4 )  .19(-2) -.16 -.10(2) .96(-1) -.15(5) .33  
a .100(5) 11.3 .688(5) .74(-3) -1.0 .22(4) .24(-2) -.15 -.11(2) .90(-1) -.15(5) .30 

.750(5) 9.02 .746(5) .91(-3) -1.0 .19(4) .36(-2) -.11 -.12(2) .82(-1) -.18(5) -26 5 .600(5)  7.23 .803(5) .10(-2) -1.0 .17(4) .46(-2) -.37(-1) -.13(2) .77(-1) -.46(5) .22 
Z . 5 5 0 ( 5 )  6.47 .830(5) .11(-2) -1.0 . le(&) .51(-2) .53(-2) -.13(2) .75(-1) .33(6) -21 
2 . 5 0 0 ( 5 )  5.52 .868(5) . l l ( - 2 )  -1.0 .19(4) . 5 4 ( - 2 )  .74(-1) -.14(2) .70(-1) .25(5) .20 

. 4 7 0 ( 5 )  4.64 .963(5) . lo(-2) -1.0 .32(4) .40(-2) .30 -.15(2) .66(-1) .11(5) .26 

-.17(3) .58(-2) . 2 8 ( 5 )  -.76(-1) 

-.51(2) .20(-1) .16(5) -.42(1) 
- . 4 3 ( 2 )  .24(-1) .15(5) .10(1) 

.120(6) .a55 .983(5) . 8 3 ( - 4 )  -1.0 .15(5) -.11(-2) .55 

.900(5) 1.18 .100(6) .15(-3) -1.0 5 .700(5) 1.60 . lOl (6)  .26(-3) -1.0 .79(4) -.63(-4) .49 
2 .650(5) 1.76 . lOl (6)  .31(-3) -1.0 .71(4) .31(-3) .48 
2 . 4 7 0 ( 5 )  3.35 .963(5) .80(-3) -1.0 

.11(5) -.el(-3) .53 -.91(2) .11(-1) .21(5) -.19 

. 3 3 ( 4 )  .40(-2) .30 -.28(2) .36(-1) .11(5) -20 

.120(6) 12.9 .983(5) -64C-3) -1.0 .40(4) -.11(-2) -55  .6O(l) -.17 .73(4) -.58 

.100(5) 11.3 .995(5) .74(-3) -1.0 .42(4) -.96(-3) .54 .35(1) -.28 .77(4) -.77 
.43(4) - . 5 4 ( - 3 )  .51 .37(-1) -.27(2) .87(4) -.16(1) 

Z .500(5) 5.52 .985(5) . l l ( - 2 )  -1.0 .38(4) .28(-2) .37 -.12(2) .87(-1) .10(5) .39 
.32(4) .40(-2) .30 -.15(2) .66(-1) .11(5) .26 2 .470(5) 4.64 .963(5) . lo(-2) -1.0 

4 .800(5) 9.53 .101(6) .87(-3) -1.0 
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